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The quasi-linear hyperbolic differential equations governing fluid-hammer phenomena 
in a two-dimensional plane or axisymmetric system are written as integrals along bi- 
characteristics and a streamline. A stepwise solution procedure is constructed by replac- 
ing the integrals by approximation formulas. Derivatives of dependent variables in 
directions outside the characteristic cone are eliminated and explicit solutions are 
obtained by linearly combining the remaining difference relations. Two solution schemes 
resulting from the two approximation formulas are examined for their numerical 
stability. 

Numerical calculations are carried out for a plane acoustic wave diffracting from a 
90” sharp corner, and the result is compared with analytical solutions and experiment. 
Numerical results are further obtained for a simple problem involving a sudden ex- 
pansion and contraction and the results are compared with one-dimensional acoustic 
solutions. 

INTRODUCTION 

Basically, there are two different methods of numerical integration for hyper- 
bolic partial differential equations: (1) The direct finite-difference method, and 
(2) the method of characteristics. The finite-difference method uses either the 
artificial viscosity [l] or a special differencing scheme [2]. Both schemes can use 
rectangular grids and are readily amenable to direct machine coding. Nevertheless, 
the solution is inherently diffused, and discontinuities or steep gradients in the 
solution can be unrealistically spread out. This difficulty can be minimized in the 
method of characteristics since the equations are rendered in a characteristic form 
before applying the finite-difference approximation such that equations include 
derivatives only in directions that the solution is extendible. Consequently, this 
method is potentially more accurate, although it is logically more complex and 
requires an extensive programming effort. 

The method of characteristics, involving more than two independent variables, 
has been considered since late in the 1940’s. Some of the early works include 
Thornhill [3], Coburn and Dolph [4], Holt [5], and Butler [6], and more recently, 
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Sauer [7] and Richardson [8]. Many variations exist in the methods used by these 
investigators. They arise mainly as a result of the inherent weak formulation of 
the multidimensional method, namely, there exist infinitely many lines along which 
the equations can be integrated. Coburn and Dolph proposed a method, further 
developed by Holt, that considers two bicharacteristics and a curve that is the 
intersection of the two characteristic surfaces through the two chosen bicharac- 
teristics. Sauer used curves called nearcharacteristics that lie outside the charac- 
teristic cone. In both of these methods, the solution refers directly to conditions 
outside the true domain of dependence, and its effect on the numerical results 
is not well known. Butler and Richardson used four bicharacteristics and a stream 
line that always fall inside the cone. 

In this paper, a three-variable method is discussed that specializes to the parti- 
cular problem of the propagation of fluid-hammer waves. Two different schemes 
are considered: One that is essentially the same scheme as discussed in Butler and 
also in Richardson, and the other a slight variation of it. Both schemes use four 
bicharacteristics and one streamline, in which the compatibility relations written 
as integrals are approximated in two different ways. The von Neumann stability 
test performed for these schemes revealed that a more stringent condition is 
required on the time step than the Courant-Friedrichs-Lewy (CFL) [9] criterion. 
Numerical dispersion resulting from the restrictive time step is discussed by a 
comparison of the numerical results with exact analytical solutions. 

GOVERNING EQUATIONS 

In flows involving large changes in pressure or rapidly varying unsteady motions, 
the small compressibility of liquids is of primary importance. In short-duration 
transients, the passive viscous effects are small compared to the more important 
unsteady and pressure terms. 

The basic differential equations describing the fluid-hammer phenomena in a 
two-dimensional domain are: 

Continuity, 

Momentum, 

(1) 

(2) 

(3) 
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Isentropic relation, 
aP 

( 1 ap s = a2, (41 

where v = 0 for Cartesian and v = 1 for cylindrical geometry. (This equation 
replaces the equation of state in a more general problem of a fully compressible 
flow. The fluid-hammer speed a is assumed to be a constant.) Since the change in 
density is negligible, and it is difficult to handle this small change, the terms 
involving the derivatives of density are eliminated by combining Eqs. (1) and (4): 

Equations (2), (3), and (5) do not contain any derivatives of the density and they 
are conveniently used in the numerical solution, where the density appearing in 
these equations explicitly is treated as a constant. 

CHARACTERISTIC FORMULATION 

The method of characteristics [lo, 1 l] is used, by an appropriate choice of 
coordinates, to replace the original system of partial differential equations by a set 
of compatibility relations involving characteristic coordinates in terms of which 
the differentiation becomes considerably simplified. The indeterminacy condition 
of the derivatives of the solution in the direction normal to the characteristic 
manifold requires the characteristic determinant to vanish, i.e., 

where 4 is the characteristic coordinate normal to the characteristic manifold. 
If A is a vector parallel to the #-coordinate, its components A,, A1 , and A, in the 
direction of the t, r, and z coordinate are &@t, a@-, and a$/az, respectively. 
Equation (6) yields a third-order polynomial that determines X: 

( 
84 3 a4 a4 at+uar+v&- I[ ~+Ug’ w Z$ + a ((-$)’ + (Z$)P)l’e] 

x +tug+wg- 
[ 

a ((gr + (Z$)‘)“‘] = 0. 
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Bicharacteristics 

The characteristic equations (three equations resulting from Eq. (7)) are of the 
Hamilton-Jacobi type of which solutions are the canonical equations that are 
also called bicharacteristics: 

dr 
-& = u, 

dz - zz w; 
dt 

dr 
&=ufa War 

((a+/ar)z + (a+/aiyy ' 

dz 
Z=wfa waz 

((a+/ar>2 + e-+w42)1~2 ’ (9b) 

Notice that Eqs. (8) define the streamline, whereas Eqs. (9) represent a multitude 
of bicharacteristics lying on the surface of the two generalized cones that are the 
envelopes of all the characteristic manifolds at any point. The + and - signs in 
Eqs. (9) refer to the bicharacteristics on the upper and lower cone, respectively. 
Figure 1 depicts the geometric description of the generalized cone, streamline, 

--z 

FIG. 1. Streamline, bicharacteristic, and characteristic cone at P in r-r-z space. 

and bicharacteristics, where the vector x indicated in the figure is a particular x 
that is normal to a particular manifold intercepting the cones along the bicharac- 
teristic QPQ’. Only the lower cone is considered, in which the base circle (the circle 
with center 0 in Fig. 1) is placed in the initial surface while the general point P 
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is located at a point a small increment dt advanced in time. It can be shown that 
a bicharacteristic on the lower cone can be expressed parametrically as 

dr = (u - a cos @ dt, 

dz = (w - a sin 6)) dt, 
(10) 

where the angle 0 is measured counterclockwise as time increases (see Fig. 1). 

Compatibility Relations 

Equations (2) (3), and (5) the original system of partial differential equations, 
are linearly combined to yield compatibility relations that involve differentiation 
along bicharacteristics: 

1 4 cos6$+sin8~------ 
dt pa dt 

I .j du 
x smL 0 dr - sm 0 cos B 

( 
au 
z + ar “) + co? e 2 + v ;] = 0, (11) 

where d/dt represents the differentiation along a bicharacteristic. Along the stream- 
line, Eq. (5) is used. As will be discussed later, the choice of angle 19, 0, 7r/2, rr, 
and 3~r/2, considerably simplifies the equations, and the resulting four equations 
together with the one along the streamline are sufficient to solve for the five 
unknowns u, w, p, &jar, and awjaz appearing in the equations. In actual cal- 
culations, the five equations are linearly combined to eliminate the two derivatives 
and the remaining three equations are finally used to solve for the desired three 
flow variables. 

NUMERICAL PROCEDURE 

The compatibility relations are written first as integrals along the four bicharac- 
teristics and the streamline. The compatibility relations 

s 
COS e, dU + 

s 
sin 8, dw - $ j dp 

(12) 
=a 

S[ 
sin2 e a” - sin 0 cos 4 

nar n 
+ COS2 en g + V r] dt, 

hold along the four bicharacteristics (n = 1, 2, 3, and 4) defined by 

jdr = f(u-acosO,)dt, 

f dz = s (1~ - a sin 0,) dt, 

(134 

(13b) 
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and the relation 

j dp = -pa” j g + g + v ;) dt 

applies along the streamline, defined by 

J’ dr = j u dt, 

(14) 

UW 

j dz = j \I’ dt. Wb) 

In Eqs. (12) and (13), the angles On will, in general, vary along the bicharacteristics. 
This was discussed by both Butler [6] and Richardson [8]. 

A procedure similar to Richardson’s is employed to obtain an expression for 
the change in the angle 0: 

de = - (- au all attj 
sin 01 cos 01- + co? ci - - sin2 ~11_ 

ar az ar 

+ sin 01 cos 01 az ““-) dt + O(b)‘. (16) 

Here, CY. denotes the angle at the cone vertex, do = 0 - CY, where 0 is the angle 
away from the cone vertex, and the spatial derivatives are to be evaluated in the 
initial time plane (see Fig. 2 for the finite-difference network used in the numerical 
procedure). A brief derivation of Eq. (16) is given in the Appendix. 

Two different numerical schemes are considered here; one that is basically the 
same as the one discussed in Butler or Richardson in which the integrals are 
approximated by a trapezoidal formula and the other employing a lower-order 
approximation in which the integrands are evaluated at the cone vertex P. Thus, 
the former scheme yields the second-order accurate solution while the latter is 

Bicharacterist its 

FIG. 2. Streamline and bicharacteristics in finite-difference grids. 
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essentially a first-order solution scheme. (Because of the assumptions associated 
with Eqs. (29), it is not clear whether the former scheme is truly a second-order 
scheme. In the linear limit, it can be shown that the bicharacteristic angle 19 remains 
unchanged and hence, the scheme is a second-order accurate method involving 
an error of o(~It”). In any event, the distinction of second- and first-order scheme 
will be used throughout this paper for convenience.) 

A considerable simplification is realized in the first-order approximation since 
Eq. (16) is no longer needed. Computational efficiency is also enhanced since the 
numerical procedure requires no spatial derivatives to be evaluated numerically. 

In both schemes, the choice of a: = 0,7r/2, rr, and 3n/2 eliminates the derivatives 
au/az and &jar from the discretized system of five equations (five compatibility 
relations along four bicharacteristics and one streamline) and the two remaining 
derivatives au/at- and aw/& are further eliminated by a linear combination of the 
five equations. The resulting three equations are then used to obtain an explicit 
expression for the desired flow variables U, w, and p. The nonlinear characteristic 
equations require an iterative numerical procedure. Due to the directional 
integration procedure, the values of variables U, w, p, aqar, and aw/az are required 
at points at which the bicharacteristics and the streamline intersect the current 
time-plane. These points, in general, fall between the gridpoints. The characteristic 
relations, Eqs. (13) and (15), are used in locating these intersections. In the second- 
order method, Eq. (16) also has to be used simultaneously in locating the intercepts 
as well as in evaluating the integrands of Eq. (12). Once the intercepts are located, 
the values of the dependent variables at these points are calculated using the four- 
point bivariate formula. Figure 2 depicts the finite-difference network employed 
in the numerical procedure that uses fixed grid spacings and time step. Points l-5 
shown in this figure are the intercepts of the four bicharacteristics and one stream- 
line all passing through point P with the current time-plane. The values of u and 
auj2r at point 2, for example, are determined as follows: 

Ar 
u2== ( 1--;j-;’ 

I( 
AZ2 1-x u,&$ l- Az 1 

Ar 
( 

Ar, AZ, ____ 
+ Ar AZ “’ 

It is to be noted that the expression for the derivatives approaches a central 
difference in the linear limit, i.e., (u, w) < a. 

For each unknown point, namely, point P of Fig. 2, the coordinates 
rl , r2 ,..., r5 , z1 , z2 ,..., and zS of the intercepts are first estimated by approximating 
the integrands of the characteristic equations by their values taken at the gridpoint 
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A (see Fig. 2). de, = 0 is also assumed so that 0, = (Y, = const. The values of 
flow variables u, w, p and the derivatives 8uj2r and aw/i’z at these points are next 
calculated using the bivariate formula and linear interpolation as discussed above. 
Finally, the values of u, w, and p at point P are solved using the three relations. 
This procedure for an unknown point P is repeated until a satisfactory convergence 
is attained, where in each iteration the most current solution is used in evaluating 
the integrals of the characteristic equations and compatibility relations. The 
advancement of the solution by one time-step requires this iterative procedure for 
all gridpoints lying in the advanced time-plane. 

At the boundary (or the axial-point in the case of cylindrical geometry), not 
all five equations are available since some bicharacteristic may fall outside the 
computational domain. The procedure for these points is essentially the same 
except that the missing equations must supplemented by appropriate boundary 
or axial-point conditions. 

BOUNDARY AND AXIAL-POINT CONDITIONS 

The boundary conditions considered here are those that are consistent with the 
inviscid flows. Walls are treated as rigid on which the normal component of the 
velocity vector vanishes, while the tangential component is left free. At the axis 
of symmetry, in the case of cylindrical geometry, i.e., r = 0, the radial component 
is set to zero and the term u/r is replaced by au/au. 

NUMERICAL STABILITY 

The CFL [9] criterion provides the necessary condition for stability and con- 
vergence of approximate finite-difference relations in hyperbolic systems. With 
reference to Fig. 2, the condition requires that the bicharacteristics and the stream- 
line through P all fall inside the rectangle BCED. Thus, the domain of dependence 
of the difference system contains the domain of dependence of the differential 
system. 

The von Neumann test [ 121 is performed here to obtain more specific conditions 
for stability of the two schemes discussed in this paper. It is prohibitively difficult 
to treat these schemes in their complete forms; hence, only simplified versions are 
considered and the end results are justified by numerical experimentation. The 
second-order scheme is first simplified by assuming de, = 0. (Under this assump- 
tion, the scheme is no longer a true second-order scheme. Nevertheless, it will be 
called the second-order solution scheme, mainly for convenience.) An explicit 
expression of this scheme is obtained by a linear combination of the three reduced 
equations as described earlier: 
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24 = 31% - % - (llW)(Pl - PJ + 3a 4bl - WI, 
w = 4b2 + w4 - U/W>(P2 -P4) + ~~4b2 - b4)1, 

P = (w/2)[--ul + % - w2 + w4 + (llP)(Pl + P2 + P3 + P4 - 2Pd 

- $2 dt(b, + b, + b, + b, - 2b, + 2v(u/r))], 

where 
b, = (sin2 LX(~U/~~) + cos2 ol(aw/az) + v(u/v)), , 

n = 1,2, 3, or 4 depending on whether a: is 0,~12, n, or 3~12, and 

b5 = ((&@) + @w/a,) + v(u/r)), . 

(174 
(17b) 

(17c) 

(174 

(174 

For further simplification, the characteristic equations are linearized under the 
acoustic approximation (u, w < a): 

dz, = / z, - z1 / s 0, (184 
dz, = / z, - z3 1 s 0, (18b) 
dr, = 1 r, - r2 1 s 0, (18~) 
dr4 = 1 ry - r4 1 z 0. (184 

The analysis given in the following is restricted to the plane two-dimensional 
case (V = 0). The axisymmetric case can be treated essentially in the same manner 
and it is found that the results obtained here for the plane case apply equally well 
to the axisymmetric case. The dependent variables are written as a double Fourier 
series and its each component is examined as to its growth with time. A Fourier 
component of the dependent variable U, for example, at any gridpoint ( j dr, k AZ) 
and at any time-level n dt is written as 

u(,j dr, k AZ, n At) = q,VajdreiBJcdz, 

and the same quantity at an advanced time-level (n + 1) dt as 

(1% 

u(j dr, k AZ, (n + 1) At) = $+reiajg~eiBkdP, (19b) 

where cy and 6 are the wave numbers associated with the r- and z-coordinate, 
and ugn and $+I are the time factors at the current and advanced time-level, 
respectively. Similar expressions can be written for the other two variables. The 
substitution of these expressions in the solution scheme (17) and simplification 
yield a linear system of the time factors of the form 

n+1 
UO 

i 1 

UOn 

w;+l = A(LX Llr, /3 AZ, At) won , W) 
TZ+1 

PO i 1 Ilo’& 

where A is the amplification matrix. The requirement for numerical stability is 
that the spectral radius of the amplification matrix (i.e., the maximum of the 
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absolute value of the eigenvalues) be less than unity [ 131. Since the characteristic 
relations are linearized, only simple linear interpolations are required (in obtaining 
the matrix A) in the evaluation of the values of the dependent variables (ul , u2 ,..., 
etc.) and the derivatives (au/& and aw/az) in the current time-plane. For example, 
u1 = (Ar,/Ar)u, + (1 - (Ar,/Ar)) uA ,..., (i?w/az), = (ArJAr) x (wE - w,)/2 AZ + 
(1 - Ar,/Ar)(w, - wH)/2 AZ,..., etc., where the subscripts refer to the specific 
gridpoints in the current time-plane as shown in Fig. 2. 

Since the same condition was found for stability of both of the two schemes and, 
moreover, the procedure is also essentially the same, the analysis here is restricted 
to the simpler first-order scheme. The first-order solution scheme is obtained by 
evaluating the integrands as their values at the unknown point, thus, eliminating 
the spatial derivatives (which appear in the second-order scheme) to be evaluated 
in the current time-plane: 

24 = +bh + u3 + (l/Pa-P, + P3)lY (214 

w = -:[wz + w4 + (l/Pa-P2 +P,)l; @lb) 

P = 4p[--u, + u3 - w2 + w4 + WP4(P, + Pz + P3 + P4 - %5)1. cw 
Thus, the amplification matrix obtained for this scheme is: 

0 
Ar +(-1 + e-iadr) -$ 

2+ 

(-1 + ei6dz) $L 

AZ, AZ +(-I + e-i4ds) dz +(-I + eciBdz) -J$ 

2t 
(1 - eieoz) 2 (-1 + eiodr) 2 

+(--I + e-i6dz) A$ +(-I + &BdZ) 2$L 

+(-I + emi”“‘) + 

+(-I + ,+gAz) 2 

22) 
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Although it is very difficult to obtain the eigenvalues of this matrix in its general 
form, the consideration of various particular choices for the values of (II dr and 
/3 AZ revealed that the matrix possesses the greatest eigenvalues in the absolute 
value when both e*thAr and ehisAz take on the value - 1. For this choice, the 
eigenvalues (y) are determined by the polynomial, 

(23) 

from which the stability of the first-order scheme, Eqs. (22), is determined as 
follows : 

In the linear limit, i.e., Ar, = Ar, and AZ, = AZ,, and if Ar = AZ also, it is 
seen that Eq. (24) reduces to 

aAt <&AZ, 

which indicates that the time step required for stability of the scheme under 
consideration is approximately only one-half of the one required by the CFL 
criterion. As will be seen later, this result of the von Neumann test is in agreement 
with the results of numerical experiments. 

ANALYTICAL SOLUTIONS 

To verify the numerical schemes, analytical solutions are considered for com- 
parison with numerical results for simple acoustic problems of plane pressure 
discontinuities diffracting from a 90” sharp corner. The technique used is 
Busemann’s [14] conical flow method by which the two-dimensional wave equation 
(plane case, v = 0) is transformed into the Laplace equation. The potential problem 
is then solved by a conformal mapping to a unit circle. Keller and Blank [15] 
carried out the procedure and obtained a closed form solution for a plane wave 
diffracting from a wedge of an arbitrary angle. Following the solution procedure 
as outlined in Keller and Blank, analytical solutions are obtained for plane 
discontinuities compressing and expanding around a 90” sharp corner. The results 
are plotted in Figs. 3-5. Also plotted for comparison in the figures are the numerical 
results obtained using the linearized acoustic equations and the experiment of 
White and Bleakney [16] for the case of compressing waves. (For this case of 
compressing waves, the analytical solution given in Fig. 4 is identical to the one 
given in Keller [17].) A good agreement is shown between the three results in 
general except near the corner and the discontinuity front. The deviation of the 



FLUID-HAMMER BY METHOD OF CHARACTERISTICS 231 

- ANALYTICAL SOLUTION 

0 0 0 METHOD OF CHARACTERISTICS 

1.5 

X 

FIG. 3. Expansion of plane pressure discontinuity around 90” sharp corner. 

0 . . METHOOOF CHARACTERISTICS 

FIG. 4. Compression of plane pressure discontinuity around 90” sharp corner. 
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- ANALYTICAL SOLUTION 

0 . 0 METHOD OF CHARACTERISTICS 

1.5- 

STEP NUMBER 

FIG. 5. Pressure-time history at 90” sharp corner. 

experiment from the analytical and the numerical solution near the corner, as 
shown in Fig. 4, is attributed to the viscous vortex effects, which are neglected in 
the analytical and numerical procedure. The discrepancy shown between the 
numerical result and the analytical solution (also the experiment near the discon- 
tinuity front 19 = 0, x w 1 in Fig. 4) is mainly due to the numerical dispersion 
resulting from the restrictive time steps required for numerical stability, as dis- 
cussed earlier. 

The time history of the pressure at the corner is given in Fig. 5 for both cases 
of the expansion and compression. A good agreement is again shown between the 
analytical solution and the numerical results. 

SAMPLE PROBLEM 

A simple problem involving a sudden expansion and contraction in an axisym- 
metric geometry is calculated. The numerical results confirmed the findings of the 
von Neumann stability test performed for the two numerical schemes considered 
in this paper. Figure 6 depicts the problem configuration. A step pressure-pulse 
dp of 1000 psi is used as the source of distrubance located far upstream in the 
system, which is assumed to be filled with stationary water at 50 psi. 
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FIG. 6. Sample problem. FIG. 6. Sample problem. 

0 
0 0.5 1.0 I.5 2.0 2.5 3.0 

TIME. rreec 

FIG. 7. Comparison of pressure at point G obtained by first- and second-order schemes. 

For the one-dimensional distrubance considered here, the flow in regions far 
from the expansion and contraction will be planar. Hence, the computational 
domain is divided into two separate regions. The one-dimensional domain consists 
of the regions away from the transitions, whereas the central region including the 
expansion and contraction is considered two-dimensional. 

In the one-dimensional domain, the three variable formulation discussed in this 
paper reduces to the more-familiar two-variable method. Only two compatibility 
relations corresponding to the bicharacteristic angles rrj2 and 3~12 need to be 
considered. At the boundaries that divide the two regions, simplified conditions 
u = au/ar = awlar = 0 are used. In the numerical calculation, square grids with 
constant density are employed using five nodes across the radius of the small diam- 
eter pipes. The time step is chosen to meet the von Neumann condition, Eq. (24). 

Figure 7 shows a typical comparison of the two calculations obtained by the 
two numerical schemes considered, in which the pressure at point G of Fig. 6 
is plotted against time. It is seen that the first- and second-order methods yielded 
nearly identical results. Figure 8 and 9 depict the pressures at point G and H 
respectively. Also plotted in these figures are the one-dimensional acoustic solution 
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[18] and the numerical solution based on one-dimensional treatment for the entire 
region. As suspected, a close agreement is seen between the acoustic solution and 
the one-dimensional numerical result. The dispersion effects ‘resulting from the 
restrictive time steps of the two-dimensional formulation are exemplified by the 
smeared wave front that is more pronounced in the two-dimensional result than 
the one-dimensional solution as shown in Fig. 9. In general, the two-dimensional 
calculation followed the one-dimensional solution. As can be seen in Fig. 8, 

06L 

2-D METHOD OF CHAR. 

DIA. RATIO 2 

04i 

O 6-5 1.0 1.5 2.0 2.5 

TIME. msec 

FIG. 8. Pressure vs time at the expansion points (points G and 

IO 
-Z-D METHOD OF CHAR. 
Ooooo I-D METHOD DFCHAR 
------ PLANE ACO”ST,C THEORY 

0.8 

K). 

0 
0 0.5 1.0 1.5 2.0 2.5 3.0 

TIME. mree 

FIG. 9. Pressure vs time at point H. 
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the most disagreement is indicated in the case of large diameter ratio (diameter 
ratio 7) since a significant two-dimensionality prevails near point G (see Fig. 6) 
during passage of the wavefront. This is evidenced by the large difference in the 
pressures between points G and K (in the case of diameter ratio 7) for the time 
duration 0.5 to 1.0 msec. Near one-dimensionality is shown at point H even for 
the diameter ratio 7, exhibiting a good agreement between the one- and two- 
dimensional calculation (see Fig. 9). 

CONCLUSIONS 

This paper discusses the numerical analysis of multidimensional fluid-hammer 
phenomena using the method of characteristics. Specifically, an explicit solution 
procedure is constructed along bicharacteristics and streamline such that no direct 
reference is made to conditions outside the true domain of dependence. Two 
numerical schemes evolving from two different approximations ot the integral 
relations yielded essentially identical numerical results. The von Neumann stability 
test performed for these schemes revealed that a more restrictive condition is 
required on the time step than the necessary CFL criterion. Sample calculations 
and their comparison with analytical results indicate that significant errors may 
arise in the neighborhood of steep discontinuity fronts as results of the inherent 
numerical dispersion. Nevertheless, the accuracy and efficiency of the basic 
method have been demonstrated. The first-order scheme in particular has proved 
useful, especially for handling irregular boundaries, since the scheme requires 
no spatial derivatives to be evaluated numerically. The method used in the sample 
problem is well suited to cases where only limited regions of a complex network 
require two-dimensional treatment. For such problems, it provides the needed 
resolution in the region of primary interest and, by collapsing the procedure into 
the conventional two-variable formulation, allows the remaining region to be 
computed in a one-dimensional manner. 

APPENDIX 

Let the equations describing the surface of a characteristic cone be 

r = r(a, T), 2 = z(a, T), t = t(CY, T), 

where T = --t and 01 is the bicharacteristic angle at the cone vertex. The bicharac- 
teristic equations are 

g (a, 7) = -2.4 + a cos 8, (2% 

2 (%T) = --w + a sin 8, 
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where 8 is the bicharacteristic angle away from the cone vertex. If U, W, and 8 are 
assumed to be locally constants, the following approximate relationship holds: 

cos e(8r/~oc)(a, T) = -sin &&/&)(a, T), (26) 

which approaches an exact relationship as 8 --f cx or T -+ 0. 
Consider a bicharacteristic with angle 01 at P (refer to Fig. 1) and let 7 increase. 

An expression for the angle 8 is sought here as a function of 7. Assume that the 
unknowns along a bicharacteristic are linear in T and the coefficients depend only 
on a, i.e., 

24 = uo + 144 - uol 7, GW 
w = wo + b+‘(a) - wo] 7, P’b) 
e = 01 + [e(,) - ij 7, (27~) 

where u. , w. are the values of u and w at P. Substituting Eqs. (27) into Eqs. (25) 
and integrating yields 

r(ol, T) = r. f (-240 + u COS CL) 7 + ${-U(U) + u. - Sin ol[e(oI) - a]} 72 f o(T3), 

(284 
Z((Y, T) = Z. + (-W2 + U Sin a) 7 + ;{ -W(a) + W. + U COS @(,) - CX]}T” + o(T3), 

(28b) 

where r, and z. are r and z coordinates, respectively, of the cone apex. Hence, 

g (Cd, T) = - U sin a7 + $[-U’(a) + U Sin 01 - se(a) COS 01 

+ Uol COS a: - U+) Sin a] T2 + o(T’), (294 

;(O!, T) = U COS o/T + &[-d(ai) - U COS o1 + Uo’(ol) COS a 

- d(a) sin a + ua sin a] T2 + @T3). (29b) 

Equations (29) are substituted into Eq. (26) and the leading terms on both sides 
are equated to yield 

e = 01 + [cos2 O( g - sin2 a $ + sin a cos CY. (- $ + $)I TWO. (30) 

In Eq. (34), the partial derivatives are to be evaluated in the time-plane T = T. 
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